函数y=2cos(ωx+θ)的图象与y轴交于点(0,),且该函数的最小正周期为π.(1)求θ和ω的值;(2)已知点A,点P是该函数图象上一点,点Q(x0,y0)是PA的中点,当y0=,x0∈时,求x0的值.
如图,四棱柱中, 是上的点且为中边上的高.(Ⅰ)求证:平面;(Ⅱ)求证:;(Ⅲ)线段上是否存在点,使平面?说明理由.
已知为等差数列的前项和,且.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前项和公式.
已知函数.(Ⅰ)求的值;(Ⅱ)求函数的最小正周期及单调递减区间.
已知函数,其中为大于零的常数,,函数的图像与坐标轴交点处的切线为,函数的图像与直线交点处的切线为,且.(I)若在闭区间上存在使不等式成立,求实数的取值范围;(II)对于函数和公共定义域内的任意实数,我们把的值称为两函数在处的偏差.求证:函数和在其公共定义域内的所有偏差都大于2.
已知椭圆的两个焦点分别为,且,点在椭圆上,且的周长为6.(I)求椭圆的方程;(II)若点的坐标为,不过原点的直线与椭圆相交于两点,设线段的中点为,点到直线的距离为,且三点共线.求的最大值.