△在内角的对边分别为,已知.(1)求;(2)若,求△面积的最大值.
第26届世界大学生夏季运动会将于2011年8月12日至23日在深圳举行,为了搞好接待工作,组委会在某学院招募了名男志愿者和名女志愿者,调查发现,这名志愿者的身高如下:(单位:cm )若身高在cm以上(包括cm)定义为“高个子”,身高在cm以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”. (1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取人,再从这人中选人,则至少有一人是“高个子”的概率是多少?(2)若从所有“高个子”中选名志愿者,用表示所选志愿者中能担任“礼仪小姐”的人数,试写出的分布列,并求的数学期望.
已知向量,设函数。(1)求的最小正周期与单调递减区间;(2)在中,、、分别是角、、的对边,若的面积为,求的值。
在△ABC中,内角A,B,C所对的边分别为a,b,c.向量且满足.(1)求角C的大小;(2)若求△ABC的面积.
已知数列的前n项和为,且.(1) 求数列的通项公式;(2) 令,求数列的前项和.
△ABC中,内角A,B,C所对的边分别为a,b,c.若 且.(1)求角的值;(2)求的值.