已知抛物线y=x2-4与x轴交于A,B两点(点A在点B的左侧).顶点为点C.(1)求直线AC的解析式;(2)试问在抛物线的对称轴上是否存在一个定点,使得过该定点的任意一条直线与抛物线有两个交点时,这两个交点与抛物线顶点的连线互相垂直?并说明理由.
某学校为了解学生“第二课堂”活动的选修情况,对报名参加 A .跆拳道, B .声乐, C .足球, D .古典舞这四项选修活动的学生(每人必选且只能选修一项)进行抽样调查.并根据收集的数据绘制了图①和图②两幅不完整的统计图.
根据图中提供的信息,解答下列问题:
(1)本次调查的学生共有 人;在扇形统计图中, B 所对应的扇形的圆心角的度数是 ;
(2)将条形统计图补充完整;
(3)在被调查选修古典舞的学生中有4名团员,其中有1名男生和3名女生,学校想从这4人中任选2人进行古典舞表演.请用列表或画树状图的方法求被选中的2人恰好是1男1女的概率.
如图,抛物线 y = a x 2 + bx + 2 交 x 轴于点 A ( − 3 , 0 ) 和点 B ( 1 , 0 ) ,交 y 轴于点 C .
(1)求这个抛物线的函数表达式.
(2)点 D 的坐标为 ( − 1 , 0 ) ,点 P 为第二象限内抛物线上的一个动点,求四边形 ADCP 面积的最大值.
(3)点 M 为抛物线对称轴上的点,问:在抛物线上是否存在点 N ,使 ΔMNO 为等腰直角三角形,且 ∠ MNO 为直角?若存在,请直接写出点 N 的坐标;若不存在,请说明理由.
如图,是具有公共边 AB 的两个直角三角形,其中, AC = BC , ∠ ACB = ∠ ADB = 90 ° .
(1)如图1,若延长 DA 到点 E ,使 AE = BD ,连接 CD , CE .
①求证: CD = CE , CD ⊥ CE ;
②求证: AD + BD = 2 CD ;
(2)若 ΔABC 与 ΔABD 位置如图2所示,请直接写出线段 AD , BD , CD 的数量关系.
节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶,某品牌油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,则费用为80元;若完全用电做动力行驶,则费用为30元,已知汽车行驶中每千米用油费用比用电费用多0.5元.
(1)求:汽车行驶中每千米用电费用是多少元?甲、乙两地的距离是多少千米?
(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过50元,则至少需要用电行驶多少千米?
为丰富学生的文体生活,育红学校准备成立“声乐、演讲、舞蹈、足球、篮球”五个社团,要求每个学生都参加一个社团且每人只能参加一个社团.为了了解即将参加每个社团的大致人数,学校对部分学生进行了抽样调查在整理调查数据的过程中,绘制出如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)被抽查的学生一共有多少人?
(2)将条形统计图补充完整.
(3)若全校有学生1500人,请你估计全校有意参加“声乐”社团的学生人数.
(4)从被抽查的学生中随意选出1人,该学生恰好选择参加“演讲”社团的概率是多少?