如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.
在科技馆里,小亮看见一台名为帕斯卡三角的仪器,如图所示,当一实心小球从入口落下,它在依次碰到每层菱形挡块时,会等可能地向左或向右落下. (1)试问小球通过第二层位置的概率是多少? (2)请用学过的数学方法模拟试验,并具体说明小球下落到第三层位置和第四层 位置处的概率各是多少?
已知与是反比例函数图象上的两个点. (1)求的值; (2)若点,则在反比例函数图象上是否存在点,使得以四点为顶点的四边形为梯形?若存在,求出点的坐标;若不存在,请说明理由.
已知,如图,正方形的边长为6,菱形的三个顶点分别在正方形边上,,连接. (1)当时,求的面积; (2)设,用含的代数式表示的面积; (3)判断的面积能否等于,并说明理由.
学校举办“迎奥运”知识竞赛,设一、二、三等奖共12名,奖品发放方案如下表: 用于购买奖品的总费用不少于1000元但不超过1100元,小明在购买“福娃”和微章前,了解到如下信息: (1)求一盒“福娃”和一枚徽章各多少元? (2)若本次活动设一等奖2名,则二等奖和三等奖应各设多少名?
已知经过,,,四点,一次函数的图象是直线,直线与轴交于点. (1)在右边的平面直角坐标系中画出,直线与的交点坐标为; (2)若上存在整点(横坐标与纵坐标均为整数的点称为整点),使得为等腰三角形,所有满足条件的点坐标为; (3)将沿轴向右平移个单位时,与相切.