透明的口袋里装有3个球,这3个球分别标有数字1、2、3,这些球除了数字外都相同。(1)如果从袋中任意摸出一个球,那么摸到标有数字是2的球的概率是多少?(2)小明和小东玩摸球游戏,游戏规则如下:先由小明随机摸出一个球,记下球的数字后放回,搅匀后再由小东随机摸出一个球,记下球的数字.谁摸出的球的数字大,谁获胜.现请你利用树状图或列表的方法分析游戏规则对双方是否公平?并说明理由。
(1)如图,ΔABC中,∠ABC=50°,∠ACB=70°,D为边BC上一点(D与B、C不重合),连接AD,∠ADB的平分线所在直线分别交直线AB、AC于点E、F. 求证:2∠AED-∠CAD=170°; (2)若∠ABC=∠ACB=n°,且D为射线CB上一点,(1)中其他条件不变,请直接写出∠AED与∠CAD的数量关系.(用含n的代数式表示)
如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3). (1)求ΔABC的面积; (2)设点P在坐标轴上,且ΔABP与ΔABC的面积相等,求点P的坐标.
(1)如图,直线l、l分别与直线l、l相交,∠1=76°,∠2=104°,∠3=68°,求∠4的度数. (2)如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠ACB的大小关系,并对此结论进行证明.
为了了解初一年级的学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了某校初一年级的学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图. 请你根据图中提供的信息,回答下列问题: (1)求出扇形统计图中a的值和该校初一年级学生总数; (2)求出活动时间为5天的学生人数,并补全条形统计图; (3)如果某区初一年级的学生共有3000人,根据以上数据,试估计这3000人中“活动时间不少于4天”的百分比.
如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3). (1)求ΔABC的面积; (2)在图中画出ΔABC向右平移3个单位,再向下平移2个单位的图形△ABC; (3)写出点A,B,C的坐标.