如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折痕,使点A与点C重合,折痕后在其一面着色(如图2),观察图形对比前后变化,回答下列问题: (1)GF FD:(直接填写=、>、<) (2)判断△CEF的形状,并说明理由; (3)小明通过此操作有以下两个结论: ①四边形EBCF的面积为4cm2 ②整个着色部分的面积为5.5cm2 运用所学知识,请论证小明的结论是否正确.
如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D的切线,交BC于点E. (1)求证:EB=EC; (2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.
长岭中心中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全镇汉字听写大赛. (1)请用树状图或列表法列举出各种可能选派的结果; (2)求恰好选派一男一女两位同学参赛的概率.
广水市为了改善全市中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?
解不等式组:,
为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500. (1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元? (2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?