如图1,矩形纸片ABCD的边长AB=4cm,AD=2cm.同学小明现将该矩形纸片沿EF折痕,使点A与点C重合,折痕后在其一面着色(如图2),观察图形对比前后变化,回答下列问题: (1)GF FD:(直接填写=、>、<) (2)判断△CEF的形状,并说明理由; (3)小明通过此操作有以下两个结论: ①四边形EBCF的面积为4cm2 ②整个着色部分的面积为5.5cm2 运用所学知识,请论证小明的结论是否正确.
本题10分)如图,△ADC的外接圆直径AB交CD于点E,已知∠C= 650,∠D=470,求∠CEB的度数.
(本题8分)已知等腰三角形ABC,如图.(1)用直尺和圆规作△ABC的外接圆;(2)设△ABC的外接圆的圆心为O,若∠BOC=1280,求∠BAC的度数.
12分).如图,当x=2时,抛物线取得最小值-1,并且与y轴交于点C(0,3),与x轴交于点A,B(A在B的右边)。(1)求抛物线的解析式(2)D是线段AC的中点,E为线段AC上的一动点(不与A,C重合),过点E作y轴的平行线EF与抛物线交于点F。问:是否存在△DEF与△AOC相似?若存在,求出点E的坐标;若不存在,请说明理由。(3)在抛物线的对称轴上是否存在点P,使得△APD为等腰三角形?若存在,请直接写出点p的坐标;若不存在,请说明理由。
如图,在中,点是边上的动点(点与点不重合),过动点作交于点(1)若与相似,则是多少度?(2)试问:当等于多少时,的面积最大?最大面积是多少?(3)若以线段为直径的圆和以线段为直径的圆相外切,求线段的长.
某冰箱厂为响应国家“家电下乡”号召,计划生产、两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于 4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:
(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学.其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.