二次函数y=x2-2mx+3(m>)的图象与x轴交于点A(a,0)和点B(a+n,0)(n>0且n为整数),与y轴交于C点.(1)若a=1,①求二次函数关系式;②求△ABC的面积;(2)求证:a=m-;(3)线段AB(包括A、B)上有且只有三个点的横坐标是整数,求a的值.
如图,DE为半圆的直径,O为圆心,DE=10,延长DE到A,使得EA=1,直线AC与半圆交于B、C两点,且.求弦BC的长;
已知抛物线的对称轴为y轴,该函数的最大值为3,且经过点(1,1) (1)求此抛物线的解析式 (2)若该抛物线与x轴交于A、B两点(A点在B点的左边)与y轴交于点C,求S△ABC.
用适当的方法解下列方程 (1) (2)用配方法解方程:
如图,在直角坐标系中,△ABC的顶点坐标分别为A(,5),B(,1)和C(,3),作出△ABC关于原点O对称的△A1B1C1,并写出点A、B、C的对应点A1、B1、C1的坐标.
如图1,在,将一块与全等的三角板的直角顶点放在点C上,一直角边与BC重叠。 (1)操作1:固定,将三角板沿方向平移,使其直角顶点落在BC的中点M,如图2所示,探究:三角板沿方向平移的距离为___________; (2)操作2:在(1)的情况下,将三角板BC的中点M顺时针方向旋转角度,如图3所示,探究:设三角形板两直角边分别与AB、AC交于点P、Q,观察四边形MPAQ形状的变化,问:四边形MPAQ的面积S是否改变,若不变,求其面积;若改变,试说明理由; (3)在(2)的情形下,连PQ,设的面积为y,试求y关于x的函数关系式,并求x为何值时,y的值是四边形MPAQ的面积的一半,此时,指出四边形MPAQ的形状。