(本题9分)如图(1),在直角梯形OABC中,BC∥OA,∠OCB=90°,OA=6,AB=5,cos∠OAB=. (1)写出顶点A、B、C的坐标;(2)如图(2),点P为AB边上的动点(P与A、B不重合),PM⊥OA,PN⊥OC,垂足分别为M,N.设PM=x,四边形OMPN的面积为y.①求出y与x之间的函数关系式,并写出自变量x的取值范围;②是否存在一点P,使得四边形OMPN的面积恰好等于梯形OABC的面积的一半?如果存在,求出点P的坐标;如果不存在,说明理由.
“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人喜欢选择自行车作为出行工具.小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米 / 分的速度骑行一段时间,休息了5分钟,再以 m 米 / 分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程 y (米 ) 与时间 x (分钟)的关系如图,请结合图象,解答下列问题:
(1) a = , b = , m = ;
(2)若小军的速度是120米 / 分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;
(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?
(4)若小军的行驶速度是 v 米 / 分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出 v 的取值范围.
为养成学生课外阅读的习惯,各学校普遍开展了“我的梦 中国梦”课外阅读活动.某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:
(1)表中 a = , b = ;
(2)请补全频数分布直方图中空缺的部分;
(3)样本中,学生日阅读所用时间的中位数落在第 组;
(4)请估计该校七年级学生日阅读量不足1小时的人数.
组别
时间段(小时)
频数
频率
1
0 ⩽ x < 0 . 5
10
0.05
2
0 . 5 ⩽ x < 1 . 0
20
0.10
3
1 . 0 ⩽ x < 1 . 5
80
b
4
1 . 5 ⩽ x < 2 . 0
a
0.35
5
2 . 0 ⩽ x < 2 . 5
12
0.06
6
2 . 5 ⩽ x < 3 . 0
8
0.04
如图,在 ΔABC 中, AD ⊥ BC 于 D , BD = AD , DG = DC , E , F 分别是 BG , AC 的中点.
(1)求证: DE = DF , DE ⊥ DF ;
(2)连接 EF ,若 AC = 10 ,求 EF 的长.
如图,已知抛物线 y = − x 2 + bx + c 与 x 轴交于点 A ( − 1 , 0 ) 和点 B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 BC 交抛物线的对称轴于点 E , D 是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点 C 和点 D 的坐标;
(3)若点 P 在第一象限内的抛物线上,且 S ΔABP = 4 S ΔCOE ,求 P 点坐标.
注:二次函数 y = a x 2 + bx + c ( a ≠ 0 ) 的顶点坐标为 ( − b 2 a , 4 ac − b 2 4 a )
如图,平面直角坐标系内,小正方形网格的边长为1个单位长度, ΔABC 的三个顶点的坐标分别为 A ( − 3 , 4 ) , B ( − 5 , 2 ) , C ( − 2 , 1 ) .
(1)画出 ΔABC 关于 y 轴的对称图形△ A 1 B 1 C 1 ;
(2)画出将 ΔABC 绕原点 O 逆时针方向旋转 90 ° 得到的△ A 2 B 2 C 2 ;
(3)求(2)中线段 OA 扫过的图形面积.