(本小题满分16分)在平面直角坐标系中,圆交轴于点(点在轴的负半轴上),点为圆上一动点,分别交直线于两点.(1)求两点纵坐标的乘积; (2)若点的坐标为,连接交圆于另一点.①试判断点与以为直径的圆的位置关系,并说明理由; ②记的斜率分别为,试探究是否为定值?若是,请求出该定值;若不是,请说明理由.
(12分) 已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x-3y+16=0,CA:2x+y-2=0,求AC边上的高所在的直线方程.
已知函数f(x)=log2,(x∈(-∞,-)∪(,+∞)) (1)判断函数f(x)的奇偶性,并说明理由; (2)判断函数f(x)在区间(,+∞)上的单调性.
经测试,光线每通过一块特殊的玻璃板,其强度将损失10%,已知原来的光线强度为a,设通过x块这样的玻璃板后的光线强度为y. (1) 试写出y与x的函数关系式; (2) 通过多少块玻璃板后,光线强度削弱到原来的以下?
已知函数y=f(x)是R上的偶函数,且x≥0时,f(x)=()x-1. (1)求f(x)的解析式; (2)画出此函数的图象.
求实数m的取值范围,使关于x的方程x2-2x+m+1=0有两个正根.