(本小题满分16分)在平面直角坐标系中,圆交轴于点(点在轴的负半轴上),点为圆上一动点,分别交直线于两点.(1)求两点纵坐标的乘积; (2)若点的坐标为,连接交圆于另一点.①试判断点与以为直径的圆的位置关系,并说明理由; ②记的斜率分别为,试探究是否为定值?若是,请求出该定值;若不是,请说明理由.
(本题13分) 如图,在四棱锥中,平面,底面是菱形,.分别是的中点. (1) 求证:; (2) 求证:.
(本题13分) 已知函数 (1)若对一切实数恒成立,求实数的取值范围. (2)求在区间上的最小值的表达式.
(本题13分) 已知平面直角坐标系内三点 (1) 求过三点的圆的方程,并指出圆心坐标与圆的半径. (2)求过点与条件 (1) 的圆相切的直线方程.
(本题12分) 设,,其中. (1) 若,求的值; (2)若,求的取值范围.
(本题12分) 已知平面,且是垂足, 证明: