(本小题满分8分)从某校高一年级800名学生中随机抽取100名测量身高,测量后发现被抽取的学生身高全部介于155厘米和195厘米之间,将测量结果分为八组:第一组,第二组,……,第八组,得到频率分布直方图如右.(Ⅰ)计算第七组[185,190)的样本数;并估计这个高一年级800名学生中身高在170厘米以下的人数;(Ⅱ) 求出这100名学生身高的中位数、平均数.
如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
如图,在三棱锥中,底面,,,分别是的中点,在上,且. (1)求证:平面; (2)在线段上上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人? (2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.
【改编题】已知向量,,,函数, (1)求函数的最小正周期和单调递增区间; (2)当时,求函数的值域.
选修4—5:不等式选讲 已知,不等式的解集为. (1)求; (2)当时,证明:.