(本小题满分12分)已知函数(1)讨论函数的单调性(2)若函数与函数的图像关于原点对称且就函数分别求解下面两问:(Ⅰ)问是否存在过点的直线与函数的图象相切? 若存在,有多少条?若不存在,说明理由(Ⅱ)求证:对于任意正整数,均有(为自然对数的底数)
已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2. (1)求数列{an}的通项公式. (2)设bn=,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得 对于任意的正整数n,有Tn>恒成立?若存在,求出k的值;若不存在,说明理由.
已知等差数列{an}的前n项和为Sn,n∈N*,且a2=3,点(10,S10)在直线y=10x上. (1)求数列{an}的通项公式; (2)设bn=2an+2n,求数列{bn}的前n项和Tn.
设数列{an}的前n项和为Sn,已知ban-2n=(b-1)Sn. (1)证明:当b=2时,{an-n·2n-1}是等比数列; (2)求{an}的通项公式.
在等差数列{an}中,a16+a17+a18=a9=-36,其前n项和为Sn. (1)求Sn的最小值,并求出Sn取最小值时n的值; (2)求Tn=|a1|+|a2|+…+|an|.
在△ABC中,角A,B,C所对的边分别是a,b,c,设平面向量e1=,e2=,且e1⊥e2. (1)求cos 2A的值; (2)若a=2,求△ABC的周长L的取值范围.