如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5.OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C.(1)试判断线段AB与AC的数量关系,并说明理由;(2)若PC=2,求⊙O的半径和线段PB的长;(3)若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,求⊙O的半径r的取值范围.
(乐山)如图1,四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=.(1)求CD边的长;(2)如图2,将直线CD边沿箭头方向平移,交DA于点P,交CB于点Q (点Q运动到点B停止),设DP=x,四边形PQCD的面积为,求与的函数关系式,并求出自变量的取值范围.
(乐山)如图,正比例函数的图象与反比例函数的图象交于A、B两点,过点A作AC垂直x轴于点C,连结BC.若△ABC的面积为2.(1)求k的值;(2)x轴上是否存在一点D,使△ABD为直角三角形?若存在,求出点D的坐标;若不存在,请说明理由.
(乐山)如图1,二次函数的图象与轴分别交于A、B两点,与轴交于点C.若tan∠ABC=3,一元二次方程的两根为-8、2.(1)求二次函数的解析式;(2)直线绕点A以AB为起始位置顺时针旋转到AC位置停止,与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结,求△PEF周长的最小值.
如图,一次函数的图象与反比例函数()在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式;(2)在第一象限内,当一次函数的值大于反比例函数()的值时,写出自变量x的取值范围.
如图,已知抛物线()与y轴交于点C,与x轴交于点A(1,0)和点B.(1)求抛物线的解析式;(2)求直线BC的解析式;(3)若点N是抛物线上的动点,过点N作NH⊥x轴,垂足为H,以B,N,H为顶点的三角形是否能够与△OBC相似?若能,请求出所有符合条件的点N的坐标;若不能,请说明理由.