(乐山)如图1,二次函数的图象与轴分别交于A、B两点,与轴交于点C.若tan∠ABC=3,一元二次方程的两根为-8、2.(1)求二次函数的解析式;(2)直线绕点A以AB为起始位置顺时针旋转到AC位置停止,与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结,求△PEF周长的最小值.
为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,共调查名学生; (2)请把条形图(图1)补充完整; (3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数; (4)如果该校共有学生名,请你估计最喜爱古琴的学生人数.
如图,中,,是边上的中线,分别过点,作,的平行线交于点,且交于点,连接. (1)求证:四边形是菱形; (2)若,求的值.
在平面直角坐标系中,过点向轴作垂线,垂足为,连接.双曲线经过斜边的中点,与边交于点. (1)求反比例函数的解析式; (2)求△的面积.
列方程或方程组解应用题: 年“植树节”前夕,某小区为绿化环境,购进棵柏树苗和棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的倍少元,每棵柏树苗的进价是多少元?
先化简,再求值:,其中.