已知双曲线y=(k>0,x>0)与矩形ABCD,A(2,1)C(6,4)设双曲线与折线A-D-C交于E,与折线A-B-C交于F.(1)写出B,D两点的坐标;(2)k为何值时,双曲线与矩形有公共点;(3)设△AEF的面积为y,当E,F分别在DC和BC上时,确定y与k之间的函数关系式,并确定k取值范围;(4)当E,F分别在DC和BC上,且△AEF为直角三角形,求k的值;(5)直接写出EF的最大值.
某数学兴趣小组,利用树影测量树高.已测出树AB的影长AC为9米,并测出此时太阳光线与地面成30°夹角. (1)求出树高AB;(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变,试求树影的最大长度.(计算结果精确到0.1米,参考数据:≈1.414, ≈1.732)
已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.
如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD就是一个“格点四边形”.(1)求图(一)中四边形ABCD的面积;(2)在图(二)方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD的面积且为轴对称图形.
秀文中学初三有100名学生参加了初中数学竞赛.已知竞赛成绩都是整数,试题满分为140分,参赛学生的成绩统计情况如下图:请根据以上信息完成下列问题:(1)将该统计图补充完整;(2)竞赛成绩的中位数落在上表中的 分数段内;(3)若80分以上 (含80分)的考生均可获得不同等级的奖励,该校参加竞赛的学生获奖率为 %.
化简求值:,其中.