△ABC的内角的对边分别为,.(1)求;(2)若,求
已知函数.(1)求的单调递增区间;(2)若在处的切线与直线垂直,求证:对任意,都有;(3)若,对于任意,都有成立,求实数的取值范围.
已知点P(4, 4),圆C:与椭圆E:有一个公共点A(3,1),F1、F2分别是椭圆的左、右焦点,直线PF1与圆C相切.(Ⅰ)求m的值与椭圆E的方程;(Ⅱ)设Q为椭圆E上的一个动点,求的取值范围.
已知椭圆:的离心率为,分别为椭圆的左、右焦点,若椭圆的焦距为2.⑴求椭圆的方程;⑵设为椭圆上任意一点,以为圆心,为半径作圆,当圆与椭圆的右准线有公共点时,求△面积的最大值.
已知函数处取得极值.(1)求的值;(2)求的单调区间;(3)若当时恒有成立,求实数c的取值范围.
已知命题p:对m∈[-1,1],不等式a2-5a+5恒成立;命题q:方程x2+ax+2=0在实数集内没有解;若p和q都是真命题,求a的取值范围.