(本小题满分8分)在等比数列中,且,求公比q及前6项的和.
(本小题15分)在各项为正的数列中,数列的前n项和满足(1) 求;(2) 由(1)猜想数列的通项公式并证明,(3) 求
(本小题14分)在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛。(Ⅰ)通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;(Ⅱ)记1号、2号射箭运动员射箭的环数为(所有取值为0,1,2,3...,10)分别为、.根据教练员提供的资料,其概率分布如下表:
① 若1,2号运动员各射箭一次,求两人中至少有一人命中9环的概率;② ②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.
(本小题14分)用分析法证明: 已知,求证
(本小题14分)已知函数,当时,有极大值;(1)求的值;(2)求函数的极小值。
已知圆的圆心在直线上,且圆与轴相切,若圆截直线得弦长为,求圆的方程.