设数列的前项和为.若对任意的正整数,总存在正整数,使得,则称是“数列”.(1)若数列的前项和为,证明:数列是“数列”;(2)设是等差数列,其首项,公差,若是“数列”,求的值;(3)证明:对任意的等差数列,总存在两个“数列”和,使得成立.
设函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当时,求函数的最大值及取得最大值时的的值;
已知等差数列, (1)求的通项公式; (2)令,求数列的前项和;
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个小球被取出的可能性相等。 (1)求取出的两个球上标号为相邻整数的概率; (2)求取出的两个球上标号之和能被3整除的概率。
如图,已知棱柱的底面是菱形,且面,,,为棱的中点,为线段的中点, (1)求证:面; (2)求证:面
已知函数 (1)求函数的最小正周期 (2)求函数的单调递增区间 (3)求函数的最大值,并求出对应的X值的取值集合。