已知向量,令且的周期为.(1)求函数的解析式;(2)若时,求实数的取值范围.
某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=x3+x2+2x.(1)求在第1s内的平均速度;(2)求在1s末的瞬时速度;(3)经过多少时间该物体的运动速度达到14m/s?
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点,已知函数f(x)=ax2+(b+1)x+b-1(a≠0).(1)当a=1,b=-2时,求f(x)的不动点;(2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
设a是实数,讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.
设函数f(x)=-ax2,a∈R.(1)当a=2时,求函数f(x)的零点;(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点;(3)若函数f(x)有四个不同的零点,求a的取值范围.
已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求实数m的取值范围;(2)若方程两根均在区间(0,1)内,求实数m的取值范围.