(本小题满分12分)已知椭圆:的焦点分别为、,点在椭圆上,满足,.(Ⅰ)求椭圆的方程;(Ⅱ)已知点,试探究是否存在直线与椭圆交于、两点,且使得?若存在,求出的取值范围;若不存在,请说明理由.
(本小题满分14分) 在综合实践活动中,因制作一个工艺品的需要,某小组设计了如图所示的一个门(该图为轴对 称图形),其中矩形的三边、、由长6分米的材料弯折而成,边的长 为分米();曲线拟从以下两种曲线中选择一种:曲线是一段余弦曲线 (在如图所示的平面直角坐标系中,其解析式为),此时记门的最高点到 边的距离为;曲线是一段抛物线,其焦点到准线的距离为,此时记门的最高点 到边的距离为. (1)试分别求出函数、的表达式; (2)要使得点到边的距离最大,应选用哪一种曲线?此时,最大值是多少?
.(本小题满分14分) 如图,在四棱锥中,四边形是菱形,,为的中点. (1)求证:面; (2)求证:平面平面.
(本小题满分14分) 已知函数. (1)求函数的最小正周期; (2)求函数在区间上的函数值的取值范围.
(12分)已知函数过点,且关于成中心对称. (1)求函数的解析式; (2)数列满足.求证:.
.(12分)已知椭圆的中心在原点,分别为它的左、右焦点,直线为它的一条准线,又知椭圆上存在点,使得. (1)求椭圆的方程; (2)若是椭圆上不与椭圆顶点重合的任意两点,点关于轴的对称点是,直线分别交轴于点,点,探究是否为定值,若为定值,求出该定值,若不为定值,请说明理由.