已知抛物线经过A(﹣3,0),B(1,0),C(2,)三点,其对称轴交x轴于点H,一次函数()的图象经过点C,与抛物线交于另一点D(点D在点C的左边),与抛物线的对称轴交于点E.(1)求抛物线的解析式;(2)如图1,当时,求一次函数的解析式;(3)如图2,设∠CEH=α,∠EAH=β,当α>β时,直接写出k的取值范围.
甲、乙两地相距20千米.小明上午8:30骑自行车由甲地去乙地,平均车速8千米/小时;小丽上午10:00坐公共汽车沿相同的路线也由甲地去乙地,平均车速为40千米/小时.(1)分别写出两人离甲地的距离与时间的函数关系式,并在同一平面直角坐标系中画出两个函数的图象;(2)判断谁先到达乙地,并说明理由.
如图,大楼AB、CD和大树EF的底端B、D、F在同一直线上,BF=FD=10米,AB=16米,某人在楼顶A处测得点C的仰角为22°,测得点E的俯角为45°.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)(1)求大树EF的高度;(2)求大楼CD的高度.
已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求b,c的值;(2)将二次函数y=-x2+bx+c的图象先向下平移2个单位,再向左平移1个单位,直接写出经过两次平移后的二次函数的关系式.
如图,已知,正方形纸片ABCD的边长为4,点P在BC边上,BP=1,点E在AB边上,且∠BPE=60°,沿PE翻折△EBP得到△EB′P. F是CD边上一点,沿PF翻折△FCP得到△FC′P,使点Cˊ落在射线PBˊ上.(1)求证:EB′// C′F;(2)连接B′F、C′E,求证:四边形EB′F C′是平行四边形.
在统计数据时,我们将所有数值由小到大排列并分成四等份,每一部分大约包含25%的数据项,处于三个分割点位置的数从小到大分别记为Q1、Q2、Q3.再将最小值记为M,最大值记为N;例如:某班共有男生23人,一次数学考试的成绩从小到大排列后M=38,Q1=60、Q2=76、Q3=91,N=100,将这几个数值按如图的方式绘制统计图,由于统计图的形状如箱子,我们把它称为“箱型图”.该班女生共有23人,本次考试的成绩中:M=47,Q1=57、Q2=70、Q3=87,N=96. (1)请在图中画出该班女生本次考试成绩的“箱型图”; (2)请根据男生和女生的“箱型图”,结合所学的统计知识,评价该班男、女生的成绩.