已知二次函数y=-x2+bx+c的图象与x轴的一个交点坐标为(-1,0),与y轴的交点坐标为(0,3).(1)求b,c的值;(2)将二次函数y=-x2+bx+c的图象先向下平移2个单位,再向左平移1个单位,直接写出经过两次平移后的二次函数的关系式.
如图1,在平面直角坐标系中,为坐标原点,是反比例函数图象上任意一点,以为圆心,为半径的圆与坐标轴分别交于点、. (1)求证:线段AB为⊙P的直径; (2)求的面积; (3)如图2,是反比例函数图象上异于点的另一点,以为圆心,为半径画圆与坐标轴分别交于点、.求证:.
某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元 ,但一天产量减少5件. (1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式; (2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.
如图,为的直径,点为上一点,若,过点作直线垂直于射线,垂足为点. (1)试判断与的位置关系,并说明理由; (2)若直线与的延长线相交于点,的半径为3,并且.求的长.
小明和小刚做纸牌游戏,如图,两组相同的纸牌,每组两张,牌面数字分别是2和3,将两组牌背面朝上,洗匀后从每组牌中各抽取一张,称为一次游戏.当两张牌的牌面数字之积为奇数,小明得2分,否则小刚得1分,这个游戏对双方公平吗?请说明理由.
已知关于x的一元二次方程(a+c)x2+2bx+(a-c=0),其中a、b、c分别为△ABC三边的长. (1)如果是方程的根,试判断的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断的形状,并说明理由; (3)如果是等边三角形,试求这个一元二次方程的根.