(本小题满分12分)已知公差大于零的等差数列满足:.(Ⅰ)求数列通项公式;(Ⅱ)记,求数列的前项和.
围建一个面积为360 m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米),修建此矩形场地围墙的总费用为y(单位:元).(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
设a、b、c均为实数,求证:++≥++
已知a、b、c∈R,求证:a2+b2+c2+4≥ab+3b+2c.
设函数f(x)=|x-1|+|x-a|.(1)若a=-1,解不等式f(x)≥3;(2)如果∀x∈R,f(x)≥2,求a的取值范围
如下图,O为数轴的原点,A,B,M为数轴上三点,C为线段OM上的动点.设x表示C与原点的距离,y表示C到A距离的4倍与C到B距离的6倍的和.(1)将y表示为x的函数;(2)要使y的值不超过70,x应该在什么范围内取值?