已知椭圆C:,⊙, 点,分别是椭圆的左顶点和左焦点,点不是上的点,点是上的动点.(1)若,是的切线,求椭圆的方程;(2)是否存在这样的椭圆,使得恒为常数?如果存在,求出这个数及的离心率;如果不存在,说明理由.
已知函数,. (1)若,则,满足什么条件时,曲线与在处总有相同的切线? (2)当时,求函数的单调减区间; (3)当时,若对任意的恒成立,求的取值的集合.
【原创】已知椭圆C :, 经过点P,离心率是. (1)求椭圆C的方程; (2)设直线与椭圆交于两点,且以为直径的圆过椭圆右顶点,求证:直线l恒过定点.
如图,两座建筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是9m和15m,从建筑物AB的顶部A看建筑物CD的张角. (1)求BC的长度; (2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的张角分别为,,问点P在何处时,最小?
如图,在正三棱锥中,,分别为,的中点. (1)求证:平面; (2)求证:平面平面.
已知. (1)若,求的值; (2)若,且,求的值.