学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?
解方程:x2-6x-7=0.
如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(OA<OB),且OA、OB的长分别是一元二次方程x2-(+1)x+=0的两个根.点C在x轴负半轴上,且AB:AC=1:2. (1)求A、C两点的坐标.(2)若点M从点C出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围.(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,说明理由.
实践操作:如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法). (1)①作∠BAC的平分线,交BC于点O;②以O为圆心,OC为半径作圆. (2)综合运用:在你所作的图中, ①AB与⊙O的位置关系是 (直接写出答案); ②若AC=5,BC=12,求⊙O的半径.
已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计) (1)填空:EF= .cm,GH= .cm;(用含x的代数式表示) (2)若折成的长方体盒子的表面积为950cm2,求该长方体盒子的体积
已知:如图△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.