武汉轻轨一号线开通后学生上学大为便捷.为了了解学生上学所用的交通工具的乘坐情况,在全校学生中进行随机抽样调查,并根据收集的数据绘制了下面两幅统计图(信息尚不完整),请根据图中提供的信息,解答下面的问题:(1)此次共调查了 名同学;(2)将条形图补充完整,并计算扇形统计图中公交车部分的圆心角的度数; (3)如果全校共有1000名学生,估计该校乘坐轻轨上学的学生有 人.
某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中,共调查了多少名学生;
(2)补全条形统计图;
(3)若该校爱好运动的学生共有800名,则该校学生总数大约有多少名.
如图, ⊙ O 的直径 AB 交弦(不是直径) CD 于点 P ,且 P C 2 = PB · PA ,求证: AB ⊥ CD .
甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7.从三个口袋各随机取出1个小球.用画树状图或列表法求:
(1)取出的3个小球上恰好有一个偶数的概率;
(2)取出的3个小球上全是奇数的概率.
用※定义一种新运算:对于任意实数 m 和 n ,规定 m ※ n = m 2 n - mn - 3 n ,如:1※ 2 = 1 2 × 2 - 1 × 2 - 3 × 2 = - 6 .
(1)求 ( - 2 ) ※ 3 ;
(2)若3※ m ⩾ - 6 ,求 m 的取值范围,并在所给的数轴上表示出解集.
从 A 处看一栋楼顶部的仰角为 α ,看这栋楼底部的俯角为 β , A 处与楼的水平距离 AD 为 90 m .若 tan α = 0 . 27 , tan β = 2 . 73 ,求这栋楼高.