对于函数,解答下述问题:(1)若函数的定义域为R,求实数的取值范围;(2)若函数的值域为,求实数的值;
已知函数.(1)当0<a<b且f(a)=f(b)时,①求的值;②求的取值范围;(2)已知函数g(x)的定义域为D,若存在区间[m,n]⊆D,当x∈[m,n]时,g(x)的值域为[m,n],则称函数g(x)是D上的“保域函数”,区间[m,n]叫做“等域区间”.试判断函数f(x)是否为(0,+∞)上的“保域函数”?若是,求出它的“等域区间”;若不是,请说明理由.
已知函数f(x)=4﹣log2x,g(x)=log2x.(1)当时,求函数h(x)=f(x)•g(x)的值域;(2)若对任意的x∈[1,8],不等式f(x3)•f(x2)>kg(x)恒成立,求实数k的取值范围.
某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)之间满足函数关系y=ekx+b(e=2.718为自然对数的底数,k,b为常数).已知该食品在0℃的保鲜时间为160小时,在20℃的保鲜时间为40小时.(1)求该食品在30℃的保鲜时间;(2)若要使该食品的保鲜时间至少为80小时,则储存温度需要满足什么条件?
已知向量,,θ为第二象限角.(1)若,求sinθ﹣cosθ的值;(2)若∥,求的值.
已知||=3,||=5,|+|=7.(1)求向量与的夹角θ;(2)当向量k+与﹣2垂直时,求实数k的值.