对于函数,解答下述问题:(1)若函数的定义域为R,求实数的取值范围;(2)若函数的值域为,求实数的值;
(本小题满分14分) 已知函数. (1)若,曲线和在原点处的切线重合,求实数的值. (2)若,在上恒成立,求的取值范围. (3)函数,在上函数图象与直线y=1是否有交点?若有,求出交点,若没有,请说明理由.
(本小题满分12分) 某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的处,并正以30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。 (Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
(本小题满分12分) 曲线是以原点为中心,以抛物线的焦点F为右焦点,离心率为的椭圆,且过F的直线交椭圆C于P、Q两点,M是中点. (1)求椭圆C的方程; (2)当时,求直线PQ的方程.
(本小题满分12分) 已知数列的前n项和满足:(为常数,). (Ⅰ)求的通项公式; (Ⅱ)设,若数列的前n项和中,为最大值,求的取值范围.
(本小题满分12分) 在平面直角坐标系中,点M的坐标为(x,y),点P的坐标为(2,3). (I)在一个密封的盒子中,放有标号为1,2,3,4的三个形状大小完全相同的球,现从此盒中有放回地先后摸取两个球,标号分别记为x、y,求事件“=”的概率; (II)若利用计算机随机在[0,4]上先后取两个数分别记为x,y,求点M满足的概率