在数列{an}中,a1=1,an+1= (n∈N*).(Ⅰ)求a2, a3, a4;(Ⅱ)猜想an,并用数学归纳法证明;(Ⅲ)若数列bn= ,求数列{bn}的前n项和sn。
已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,对,恒成立,求实数的取值范围;(3)当且时,试比较的大小.
已知均在椭圆上,直线分别过椭圆的左、右焦点当时,有(1)求椭圆的方程(2)设是椭圆上的任一点,为圆的任一条直径,求的最大值
如图,在三棱锥中,底面,点,分别在棱上,且(Ⅰ)求证:平面;(Ⅱ)当为的中点时,求与平面所成的角的正弦;(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.
已知数列的首项,,….(Ⅰ)证明:数列是等比数列;(Ⅱ)求数列的前项和.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据检验,有没有99.9%把握认为收看文艺节目的观众与年龄有关?(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.