(本小题满分14分)已知函数(其中,无理数).当时,函数有极大值.(1)求实数的值;(2)求函数的单调区间;(3)任取,,证明:.
一束光线从点出发,经直线上一点反射后,恰好穿过点.(Ⅰ)求点关于直线的对称点的坐标; (Ⅱ)求以、为焦点且过点的椭圆的方程; (Ⅲ)设直线与椭圆的两条准线分别交于、两点,点为线段上的动点,求点到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标.
在一次考试中共有8道选择题,每道选择题都有4个选项,其中有且只有一个选项是正确的.评分标准规定:“每题只选一个选项,选对得5分,不选或选错得0分”.某考生已确定有4道题答案是正确的,其余题中:有两道只能分别判断2个选项是错误的,有一道仅能判断1个选项是错误的,还有一道因不理解题意只好乱猜,求: (1)该考生得40分的概率; (2)该考生得多少分的可能性最大? (3)该考生所得分数的数学期望.
已知:函数(是常数)是奇函数,且满足, (Ⅰ)求的值; (Ⅱ)试判断函数在区间上的单调性并说明理由; (Ⅲ)试求函数在区间上的最小值.
已知数列{an}、{bn}满足:a1=1,a2=a(a为实数),且,其中n=1,2,3,… (Ⅰ)求证:“若数列{an}是等比数列,则数列{bn}也是等比数列”是真命题; (Ⅱ)写出(Ⅰ)中命题的逆命题;判断它是真命题还是假命题,并说明理由.
设,令,,又,. (Ⅰ)判断数列是等差数列还是等比数列并证明; (Ⅱ)求数列的通项公式; (Ⅲ)求数列的前项和.