如图,四棱锥P-ABCD的底面是平行四边形,PA⊥平面ABCD,,,点E是PD上的点,且DE=PE(0<1). (Ⅰ) 求证:PB⊥AC;(Ⅱ) 求的值,使平面ACE;(Ⅲ) 当时,求二面角E-AC-B的大小.
已知奇函数是定义在上增函数,且,求x的取值范围.
(12分)函数f(x)定义在R上的偶函数,当x≥0时,f(x)=(1)写出f(x)单调区间;(2)函数的值域;
已知集合U={x|-3≤x≤3},M={x|-1<x<1},CUN={x|0<x<2},求 集合N, M∩(CUN),M∪N.
(本题满分12分) 已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+().(1)求数列和的通项公式;(2)若数列{前项和为,问>的最小正整数是多少?
(本题满分12分)已知,其中0< <2,(1)解不等式。(2)若x>1时,不等式恒成立,求实数m的范围。