如图,四棱锥P-ABCD的底面是平行四边形,PA⊥平面ABCD,,,点E是PD上的点,且DE=PE(0<1). (Ⅰ) 求证:PB⊥AC;(Ⅱ) 求的值,使平面ACE;(Ⅲ) 当时,求二面角E-AC-B的大小.
(本小题满分12分) 已知半圆(y≥0),动圆与此半圆相切且与x轴相切. (1)求动圆圆心的轨迹,并画出其轨迹图形; (2)是否存在斜率为的直线l,它与(1)中所得轨迹的曲线由左到右顺次交于A,B,C,D四点, 且满足|AD|=2|BC| .若存在,求出l的方程;若不存在,说明理由.
(本小题满分12分) 在△ABC中,∠ACB=90°, ∠BAC=30°,AB的垂直平分线分别交AB,AC于D、E(图一),沿DE将△ADE折起,使得平面ADE⊥ 平面BDEC(图二), (1)若F是AB的中点,求证:CF∥平面ADE; (2)P是AC上任意一点,求证:平面ACD⊥ 平面PBE; (3)P是AC上一点,且AC⊥ 平面PBE,求二面角P—BE—C的大小.
(本小题满分12分) 在△ABC中,角A,B,C所对的边分别为a,b,c且,a=1,b=2, (1)求C和c; (2)P为△ABC内任一点(含边界),点P到三边距离之和为d,设P到AB,BC距离分别为x,y,用x,y表示d并求d的取值范围.
(本小题满分12分) 甲、乙、丙三台机床各自独立的加工同一种零件,已知甲、乙、丙三台机床加工的零件是一等品的概率分别为0.7、0.6、0.8,乙、丙两台机床加工的零件数相等,甲机床加工的零件数是乙机床加工的零件数的二倍. (1)从甲、乙、丙加工的零件中各取一件检验,求至少有一件一等品的概率; (2)将三台机床加工的零件混合到一起,从中任意的抽取一件检验,求它是一等品的概率; (3)将三台机床加工的零件混合到一起,从中任意的抽取4件检验,其中一等品的个数记为X,求EX.
已知椭圆的离心率为, 直线与以原点为圆心、以椭圆的短半轴长为半径的圆相切。 (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左焦点为F1,右焦点为F2,直线过点F1,且垂直于椭圆的长轴,动直 线垂直于点P,线段PF2的垂直平分线交于点M,求点M的轨迹C2的方程; (Ⅲ)若AC、BD为椭圆C1的两条相互垂直的弦,垂足为右焦点F2,求四边形ABCD的面积 的最小值.