【问题提出】如图①,已知⊿ABC是等边三角形,点E在线段AB上,点D在直线BC上,且DE=EC,将⊿BCE绕点C顺时针旋转至⊿ACF,连接EF.试证明:AB=DB+AF.【类比探究】(1)如图②,如果点E在线段AB的延长线上,其它条件不变,线段AB、DB、AF之间又有怎样的数量关系?请说明理由.(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间数量关系,不必说明理由.
如图,平面直角坐标系中,O为坐标原点,等腰梯形ABCD四个顶点都在抛物线y=ax2+bx+c上,其中点A、B在x轴上,点D在轴上,且CD∥AB, 已知S梯形ABCD=8,tan∠DAO=4,点B的坐标为(2,0),点E坐标为(0,-1). (1)求此抛物线的解析式; (2)若△OEB从点B开始以个单位每秒的速度沿BD向终点D匀速运动. 设运动时间为t秒,在整个运动过程中,当边OE与线段AD相交时,求运动时间t的取值范围; (3)能否将△OEB绕平面内某点旋转90°后使得△OEB的两个顶点落在x轴上方的抛物线上,若能,请直接写出旋转中心的坐标,若不能,请说明理由.
如图,边长为4的等边△AOB的顶点O在坐标原点,点A在x轴正半轴上,点B在第一象限.一动点P沿x轴以每秒1个单位长度的速度由点O向点A匀速运动,当点P到达点A时停止运动,设点P运动的时间是t秒.在点P的运动过程中,线段BP的中点为点E,将线段PE绕点P按顺时针方向旋转60º得PC. (1)当点P运动到线段OA的中点时, 点C的坐标为 ; (2)在点P从点O到点A的运动过程中,用含t的代数式表示点C的坐标; (3)在点P从点O到点A的运动过程中,求出点C所经过的路径长.
在日常生活中,我们经常有目的地收集数据,分析数据,作出预测. (1)下图是小芳家2011年全年月用电量的条形统计图. 根据图中提供的信息,回答下列问题: ①2011年小芳家月用电量最小的是月,四个季度中用电量最大的是第季度; ②求2011年5月至6月用电量的月增长率; (2)今年小芳家添置了新电器.已知今年5月份的用电量是120千瓦时,根据2011年5月至7月用电量的增长趋势,预计今年7月份的用电量将达到240千瓦时.假设今年5月至6月用电量月增长率是6月至7月用电量月增长率的1.5倍,预计小芳家今年6月份的用电 量是多少千瓦时?
如图,⊙O的弦AD∥BC,过点D的切线交BC的延长线于点E,AC∥DE交BD于点H,DO及延长线分别交AC、BC于点G、F. (1)求证:DF垂直平分AC; (2)求证:FC=CE; (3)若弦AD=5㎝,AC=8㎝,求⊙O的半径.
如图,某数学课外活动小组测量电视塔AB的高度,他们借助一个高度为30m的建筑物CD进行测量,在点C处塔顶B的仰角为45°,在点E处测得B的仰角为37°(B、D、E三点在一条直线上).求电视塔的高度h.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)