【问题提出】如图①,已知⊿ABC是等边三角形,点E在线段AB上,点D在直线BC上,且DE=EC,将⊿BCE绕点C顺时针旋转至⊿ACF,连接EF.试证明:AB=DB+AF.【类比探究】(1)如图②,如果点E在线段AB的延长线上,其它条件不变,线段AB、DB、AF之间又有怎样的数量关系?请说明理由.(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间数量关系,不必说明理由.
如图,直线l与⊙O相交于A,B两点,且与半径OC垂直,垂足为H,已知AB=16厘米,. (1) 求⊙O的半径; (2) 如果要将直线l向下平移到与⊙O相切的位置, 平移的距离应是多少?请说明理由.
如图,反比例函数的图像与一次函数的图像交于点A(m,2)和点B(-2, n ),一次函数图像与y轴的交点为C. (1)求一次函数解析式; (2)求C点的坐标; (3)求△AOC的面积.
如图,分别是等腰的腰的中点. (1)用尺规在边上求作一点,使AM⊥BC(不写作法,保留作图痕迹) (2)求证:EM=FM.
先化简,再求值:,其中.
如图1,抛物线与轴交于两点,与轴交于点,连结AC,若求抛物线的解析式抛物线对称轴上有一动点P,当时,求出点的坐标;如图2所示,连结,是线段上(不与、重合)的一个动点.过点作直线,交抛物线于点,连结、,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?