(本小题满分12分)已知,其中均为实数,(Ⅰ)求的极值;(Ⅱ)设,求证:对恒成立;(Ⅲ)设,若对给定的,在区间上总存在使得成立,求m的取值范围.
.(本小题满分10分) (1)计算 lg-lg+lg (2)化简
已知函数在处取得极值.(1)求在[0,1]上的单调区间;(2)若对任意,不等式恒成立,求实数的取值范围.
设、分别是椭圆的左、右焦点.(1)若是该椭圆上的一个动点,求的最大值和最小值;(2)设过定点的直线与椭圆交于不同的两点、,且∠为锐角(其中为坐标原点),求直线的斜率的取值范围.
已知单调递增的等比数列满足:,且 是和的等差中项.(1)求数列的通项公式;(2)令,,求使成立的小的正整数.
设函数,其中向量=(2cosx,1),=(cosx,sin2x),x∈R.(1)若f(x)=1-且x∈[-,],求x;(2)若函数y=2sin2x的图象按向量=(m,n)(|m|<)平移后得到函数y=f(x)的图象,求实数m、n的值.