若正项数列的前项和为,首项,,()在曲线上.(1)求数列的通项公式;(2)设,表示数列的前项和,求证:.
某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护需50元.(Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车?(Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?
已知a>0且a≠1,。(1)判断函数f(x)是否有零点,若有求出零点;(2)判断函数f(x)的奇偶性;(3)讨论f(x)的单调性并用单调性定义证明。
已知奇函数(1)求实数的值,并在给出的直角坐标系中画出的图象;(2)若函数在区间上单调递增,试确定实数的取值范围.
已知集合,,其中a>0.(1)求集合A;(2)若,求实数a的取值范围
.已知椭圆的中心为坐标原点O,焦点在X轴上,椭圆短半轴长为1,动点 在直线上。(1)求椭圆的标准方程(2)求以线段OM为直径且被直线截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作直线OM的垂线与以线段OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。