(本小题满分14分)已知椭圆的左、右焦点分别为、,离心率为,且经过点.(Ⅰ)求椭圆的方程;(Ⅱ)动直线与椭圆相切,点是直线上的两点,且. 求四边形面积;(Ⅲ)过椭圆内一点作两条直线分别交椭圆于点和,设直线与的斜率分别为、,若,试问是否为定值,若是,求出此定值;若不是,说明理由.
甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为. 记甲击中目标的次数为,乙击中目标的次数为 求的分布列; 求和的数学期望.
袋中装有4个白棋子、3个黑棋子,从袋中随机地取棋子,设取到一个白棋子得2分,取到一个黑棋子得1分,从袋中任取4个棋子. (1)求得分X的分布列; (2)求得分大于6的概率.
已知随机变量X的分布列如图: (1)求; (2)求和
从5名男医生、4名女医生中选出3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有多少种?
设是函数的一个极值点. (1)求与的关系式(用表示); (2)求的单调区间; (3)设,若存在,使得成立,求实数的取值范围.