(本小题满分12分)如图,⊙的半径OB垂直于直径AC,为AO上一点, 的延长线交⊙于点N,过点N的切线交CA的延长线于点P.(1)求证:;(2)若⊙的半径为,OA=,求的长.
某公司销售、、三款手机,每款手机都有经济型和豪华型两种型号,据统计月份共销售部手机(具体销售情况见下表)
已知在销售部手机中,经济型款手机销售的频率是.(1)现用分层抽样的方法在、、三款手机中抽取部,求在款手机中抽取多少部?(2)若,求款手机中经济型比豪华型多的概率.
在中,分别是角的对边,且.(1)求的大小;(2)若,,求的面积.
已知函数,函数的导函数,且,其中为自然对数的底数.(1)求的极值;(2)若,使得不等式成立,试求实数的取值范围;(3)当时,对于,求证:.
已知椭圆的中心为原点,离心率,其一个焦点在抛物线的准线上,若抛物线与直线相切.(1)求该椭圆的标准方程;(2)当点在椭圆上运动时,设动点的运动轨迹为.若点满足:,其中是上的点,直线与的斜率之积为,试说明:是否存在两个定点,使得为定值?若存在,求的坐标;若不存在,说明理由.
已知是等差数列,首项,前项和为.令,的前项和.数列是公比为的等比数列,前项和为,且,.(1)求数列、的通项公式;(2)证明:.