(本小题满分12分)如图,平面平面,其中为矩形,为梯形,,,,为中点.(Ⅰ)求证:平面;(Ⅱ)求证:.
记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B. (1)求A; (2)若BA,求实数a的取值范围.
已知α是第一象限的角,且cosα=的值.
某乡镇供电所为了调查农村居民用电量情况,随机抽取了500户居民去年的月均用电量(单位:kw/h),将所得数据整理后,画出频率分布直方图如下,其中直方图从左到右前3个小矩形的面积之比为1︰2︰3,试估计: (Ⅰ)该乡镇月均用电量在39.5~43.5的居民所占百分比约是多少? (Ⅱ)该乡镇居民月均用电量的中位数约是多少?(精确到0.01)
已知椭圆C的焦点为,长轴长为6, (1)求椭圆C的标准方程; (2)已知过点且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度.
(12分)假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计数据,由资料显示对呈线性相关关系.
(1)请根据上表数据,用最小二乘法求出y关于x的线性回归方程。 (2)试根据(1)求出的线性回归方程,预测使用年限为10年时, 维修费用是多少?