(本小题满分12分)如图所示,在所有棱长都为的三棱柱中,侧棱,点为棱的中点.(1)求证:∥平面;(2)求四棱锥的体积.
已知函数(,),.(1)求函数的单调区间,并确定其零点个数;(2)若在其定义域内单调递增,求的取值范围;(3)证明不等式 ().
如图,点是椭圆()的左焦点,点,分别是椭圆的左顶点和上顶点,椭圆的离心率为,点在轴上,且,过点作斜率为的直线与由三点,,确定的圆相交于,两点,满足.(1)若的面积为,求椭圆的方程;(2)直线的斜率是否为定值?证明你的结论.
已知数列的前项和为,若,,.(1)求数列的通项公式:(2)令,.①当为何正整数值时,;②若对一切正整数,总有,求的取值范围.
在四棱锥中,,,面,为的中点,.(1)求证:;(2)求证:面;(3)求三棱锥的体积.
设的三个内角,,所对的边分别为,,.已知.(1)求角的大小;(2)若,求的最大值.