已知函数,且函数是上的增函数。(1)求的取值范围;(2)若对任意的,都有(e是自然对数的底),求满足条件的最大整数的值。
已知命题:方程表示焦点在轴上的双曲线。命题曲线与轴交于不同的两点,若为假命题,为真命题,求实数的取值范围。
已知函数f(x)=-x3+x2-2x(a∈R). (1)当a=3时,求函数f(x)的单调区间; (2)若对于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求实数a的取值范围; (3)若过点可作函数y=f(x)图象的三条不同切线,求实数a的取值范围.
如图,E是以AB为直径的半圆上异于点A、B的点,矩形ABCD所在的平面垂直于该半圆所在的平面,且AB=2AD=2 (1)求证: (2)设平面与半圆弧的另一个交点为 ①试证: ②若求三棱锥的体积
已知命题:方程表示椭圆;:方程表示双曲线. 若“或”为真,“且” 为假,求实数的取值范围.
如图,中,平面外一条线段AB满足AB∥DE,AB,AB⊥AC,F是CD的中点. (1)求证:AF∥平面BCE (2)若AC=AD,证明:AF⊥平面