(本小题满分12分)已知一个袋子中有3个白球和3个红球,这些球除颜色外完全相同.(Ⅰ)每次从袋中取出一个球,取出后不放回,直到取到一个红球为止,求取球次数的分布列和数学期望;(Ⅱ)每次从袋中取出一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数的数学期望.
(1)解方程:lg(x+1)+lg(x-2)="lg4" ;(2)解不等式:;
已知集合A={x|x<-1或x>5},, , (1)求 , (2) 若,求实数的取值范围
((本小题满分12分) 已知:函数,(其中,为常数,)图象的一个对称中心是. (I)求和的值;
(II)求的单调递减区间;
((本小题满分12分) 现将边长为2米的正方形铁片裁剪成一个半径为1米的扇形和一个矩形,如图所示,点分别在上,点在上.设矩形的面积为,,试将表示为的函数,并指出点在的何处时,矩形面积最大,并求之.
((本小题满分12分) 由倍角公式,可知可以表示为的二次多项式. 对于,我们有 可见可以表示为的三次多项式。一般地,存在一个次多项式,使得,这些多项式称为切比雪夫多项式. (I)求证:; (II)请求出,即用一个的四次多项式来表示; (III)利用结论,求出的值.