设为数列的前n项和,且对任意都有,记(1)求;(2)试比较与的大小;(3)证明:。
(本小题满分13分)已知函数,.(Ⅰ)求函数的导函数;(Ⅱ)当时,若函数是上的增函数,求的最小值;(Ⅲ)当,时,函数在上存在单调递增区间,求的取值范围.
(本小题满分14分)如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.(Ⅰ)求证:∥平面;(Ⅱ)求证:平面;(Ⅲ)求直线与平面所成角的正弦值.
(本小题满分13分)在某校组织的一次篮球定点投篮比赛中,两人一对一比赛规则如下:若某人某次投篮命中,则由他继续投篮,否则由对方接替投篮. 现由甲、乙两人进行一对一投篮比赛,甲和乙每次投篮命中的概率分别是,.两人共投篮3次,且第一次由甲开始投篮. 假设每人每次投篮命中与否均互不影响.(Ⅰ)求3次投篮的人依次是甲、甲、乙的概率;(Ⅱ)若投篮命中一次得1分,否则得0分. 用ξ表示甲的总得分,求ξ的分布列和数学期望.
(本小题满分13分)在中,角,,所对的边分别为,,,且,.(Ⅰ)求的值;(Ⅱ)若,求的面积.
设集合W由满足下列两个条件的数列构成:①②存在实数M,使(n为正整数)(I)在只有5项的有限数列;试判断数列是否为集合W的元素;(II)设是各项为正的等比数列,是其前n项和,证明数列;并写出M的取值范围;(III)设数列且对满足条件的M的最小值M0,都有.求证:数列单调递增.