(本小题满分10分)在平面直角坐标系xOy中,已知抛物 的准线方程为 过点M(0,-2)作抛物线的切线MA,切点为A(异于点O).直线过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问: 的值是否为定值?若是,求出定值;若不是,说明理由。
如图,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C、D的点,AE=3,正方形ABCD的边长为. (1)求证:平面ABCD丄平面ADE; (2)求四面体BADE的体积; (3)试判断直线OB是否与平面CDE垂直,并请说明理由.
已知. (1)求函数的定义域; (2)判断并证明函数的奇偶性; (3)若,试比较与的大小.
如图,在三棱柱ABC-A1B1C1中, CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点. (1)求证:CN⊥AB1; (2)求证:CN//平面AB1M.
设p;函数在上是增函数,q:函数的定义域为R. (1)若,试判断命题p的真假; (2)若命题p与命题q一真一假,试求实数的取值范围.
已知函数,其中常数. (1)求的单调区间; (2)如果函数在公共定义域D上,满足,那么就称为与的“和谐函数”.设,求证:当时,在区间上,函数与的“和谐函数”有无穷多个.