已知函数,其中常数.(1)求的单调区间;(2)如果函数在公共定义域D上,满足,那么就称 为与的“和谐函数”.设,求证:当时,在区间上,函数与的“和谐函数”有无穷多个.
已知集合(1)求;(2)求;(3)若,求a的取值范围。
已知点,圆,过点的动直线与圆交于两点,线段的中点为,O为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积.
已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.
设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点.(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
已知函数(Ⅰ)求函数的定义域;(Ⅱ)利用函数的单调性判断,在函数的图象上是否存在不同的两点,使过这两点的直线平行于x轴?并证明你的结论.(Ⅲ)当a、b满足什么条件时,在区间上恒取正值?