(本小题满分l4分)已知函数.(Ⅰ)当a=0时,求 的极值;(Ⅱ)当a<0时,求 的单调区间;(Ⅲ)方程的根的个数能否达到3,若能请求出此时a的范围,若不能,请说明理由,
(Ⅰ)设椭圆上的点到两点、距离之和等于,写出椭圆的方程和焦点坐标;(Ⅱ)设是(1)中所得椭圆上的动点,求线段的中点的轨迹方程;(Ⅲ)设点是椭圆上的任意一点,过原点的直线与椭圆相交于,两点,当直线 , 的斜率都存在,并记为, ,试探究的值是否与点及直线有关,不必证明你的结论。
(Ⅰ)求证:平面; (Ⅱ)设的中点为,求证:平面; (Ⅲ)求四棱锥的体积.
(1) 当x=2时,求证:BD⊥EG ;(2) 若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;(3) 当 f(x)取得最大值时,求二面角D-BF-C的余弦值.
,()(I)若时,函数在其定义域是增函数,求b的取值范围。(II)在(I)的结论下,设函数, ,求函数的最小值
(1)求实数m的值; (2)判断函数在上的单调性,并给出证明; (3)当Í时,函数的值域是,求实数与