(本小题满分12分)数列的前n项和记为 ,等差数列的各项为正,其前n项和为,且,又 成等比数列.(Ⅰ)求 ,的通项公式;(Ⅱ)求证:当n 2时,
求过点的直线使它与直线的夹角为.
已知是长轴为4的椭圆上的三点,点是长轴的一个顶点,过椭圆中心 (如图),且,(I)求椭圆的方程;(Ⅱ)如果椭圆上的两点,使的平分线垂直于,是否总存在实数,使。请给出证明。
已知:若点满足。(I)求点的轨迹方程,并说明轨迹是什么曲线?(II)求的取值范围;(III)若求上的取值范围。
已知椭圆的右准线与轴相交于点,过椭圆右焦点的直线与椭圆相交于两点,点在右准线上,且轴。求证:直线经过线段的中点。
已知抛物线:和抛物线:是否存在直线,使直线与抛物线从下到上顺次交于点且这些点的纵坐标组成等差数列?若存在,求出直线的方程,若不存在,请说出理由