已知向量,,函数.(1)若,求的最大值并求出相应的值;(2)若将图象上的所有点的纵坐标缩小到原来的倍,横坐标伸长到原来的倍,再向左平移个单位得到图象,求的最小正周期和对称中心;(3)若,求的值.
在△中,已知,且. (1)试确定△ 的形状; (2)求的范围.
某批发站全年分批购入每台价值为3000 元的电脑共4000台,每批都购入台,且每批均需付运费360元,储存电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比,若每批购入400台,则全年需用去运费和保管费共43600元,现在全年只有24000元资金可以用于支付这笔费用(运费和保管费),请问能否恰当安排进货数量使资金够用?写出你的结论,并说明理由.
设数列 满足,. (1)求数列 的通项公式; (2)令,求数列的前项和.
已知函数. (1)若,试求函数的最小值; (2)对于任意的,不等式 成立,试求 的取值范围.
设锐角三角形的内角的对边分别为,.(1)求的大小;(2)若,,求.