(1)计算:(﹣3)3÷2×(﹣)2+4﹣22×(﹣).(2)先化简,后求值:3a+(a﹣2b)﹣(3a﹣6b),其中a=2,b=﹣3.
某科技开发公司研制出一种新型产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,公司决定组织一次促销活动,促销期间该产品的售价单位y(元)与销售数量x(件)的函数关系如图所示.(1)求当10≤x≤50时,y与x之间的函数关系式.(2)设商家一次性购买这种产品m件,开发公司所获得的利润为z元,求z与m之间的函数关系式.(3)当商家一次性购买产品的件数超过某一数量时,是否存在随着一次性购买数量的增多,公司所获得的利润反而减少这种情况?若存在,求出在这种情况下,m的取值范围;若不存在,请说明理由.
已知:如图,斜坡AP的坡度为1:2.4,坡长AP为26米,在坡顶A处的同一水平面上有一座古塔BC,在斜坡底P处测得该塔的塔顶B的仰角为45°,在坡顶A处测得该塔的塔顶B的仰角为76°.求:(1)坡顶A到地面PQ的距离;(2)古塔BC的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
如图,一次函数与反比例函数的图象交于A(1,m)、B(4,n)两点.(1)求A、B两点的坐标和反比例函数的解析式;(2)根据图象,直接写出当y>y时x的取值范围;(3)求△AOB的面积.
如图,在边长为1的5×5的正方形网格上有两个三角形,它们顶点都在格点上.(1)△ABC与△DEF是否相似?请说明理由;(2)还能在网格上画出与△ABC相似的三角形吗?还能画出几种大小不同的?试着在备用图上画出来(三个顶点都在格点上哟).
如图,已知抛物线的对称轴为直线,交轴于A、B两点,交轴于C点,其中B点的坐标为(3,0)。(1)直接写出A点的坐标;(2)求二次函数的解析式。