(本题12分)已知点,以为圆心的圆与直线相切.(1)求圆的方程;(2)如果圆上存在两点关于直线对称,求的值.
.如图,四棱锥P-ABCD中,PA⊥底面ABCD,∥,AD=CD=1,∠=120°,=,∠=90°,M是线段PD上的一点(不包括端点).(1)求证:BC⊥平面PAC;(2)求异面直线AC与PD所成的角的余弦值(3)试确定点M的位置,使直线MA与平面PCD所成角的正弦值为.
已知等比数列的公比大于1,是数列的前n项和,,且,,依次成等差数列,数列满足:,)(1) 求数列、的通项公式;(2)求数列的前n项和为
已知函数的最小正周期为(1) 若,求函数的最小值;(2) 在△ABC中,若,且,求的值
已知函数,其中为常数,为自然对数的底数.(Ⅰ)当时,求的单调区间;(Ⅱ)若在区间上的最大值为2,求的值.
.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线:与椭圆C交于,两点,点,且,求直线的方程.