已知,设命题函数在R上单调递增;命题不等式对恒成立。若 为假,为真,求的取值范围.
已知椭圆C:+=1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为. (1)求椭圆C的方程; (2)已知动直线y=k(x+1)与椭圆C相交于A,B两点. ①若线段AB中点的横坐标为-,求斜率k的值; ②已知点M(-,0),求证:·为定值.
已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,点P(-,1)在椭圆上,线段PF2与y轴的交点M满足+=0. (1)求椭圆C的方程; (2)椭圆C上任一动点N(x0,y0)关于直线y=2x的对称点为N1(x1,y1),求3x1-4y1的取值范围.
设椭圆E:+=1(a>b>0)的上焦点是F1,过点P(3,4)和F1作直线PF1交椭圆于A,B两点,已知A(,). (1)求椭圆E的方程; (2)设点C是椭圆E上到直线PF1距离最远的点,求C点的坐标.
设A,B分别为椭圆+=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距. (1)求椭圆的方程; (2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.
已知定义域为的函数同时满足以下三个条件: ①对任意的,总有; ②; ③当,且时,成立. 称这样的函数为“友谊函数”. 请解答下列各题: (1)已知为“友谊函数”,求的值; (2)函数在区间上是否为“友谊函数”?请给出理由; (3)已知为“友谊函数”,假定存在,使得,且,求证:.