已知椭圆C方程为 ,直线过定点M(0,2)且与椭圆C交于不同的两点A,B(1)若直线倾斜角为 ,求的值.(2) 若,求直线的斜率的取值范围.
在四棱锥中,,,,为的中点,为的中点,. (1)求证:; (2)求证:; (3)求三棱锥的体积.
已知等差数列的前项和为. (1)请写出数列的前项和公式,并推导其公式; (2)若,数列的前项和为,求的和.
空气质量指数(单位:)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
某市年月日—月日(天)对空气质量指数进行监测,获得数据后得到如下条形图. (1)估计该城市一个月内空气质量类别为优的概率; (2)从空气质量级别为三级和四级的数据中任取个,求恰好有一天空气质量类别为中度污染的概率.
设锐角三角形ABC的内角A,B,C的对边分别为,且. (1)求角的大小; (2)若,求的面积及.
已知函数 (1)当时,求函数的单调递增区间; (2)记函数的图象为曲线,设点是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”,试问:函数是否存在“中值相依切线”,请说明理由.