甲、乙两位学生参加数学竞赛培训,在培训期间,他们参加的5次预赛成绩记录如下: 甲 乙 (1)用茎叶图表示这两组数据; (2)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率; (3)①求甲、乙两人的成绩的平均数与方差,②若现要从中选派一人参加数学竞赛,根据你的计算结果,你认为选派哪位学生参加合适?
(本题满分14分) 设向量α=(sin 2x,sin x+cos x),β=(1,sin x-cos x),其中x∈R,函数f(x)=αβ. (Ⅰ) 求f(x)的最小正周期; (Ⅱ) 若f(θ)=,其中0<θ<,求cos(θ+)的值.
已知函数, (1) 设(其中是的导函数),求的最大值; (2) 证明: 当时,求证: ; (3) 设,当时,不等式恒成立,求的最大值
在数列中,,,且已知函数在处取得极值。 ⑴证明:数列是等比数列 ⑵求数列的通项和前项和
某地有三家工厂,分别位于矩形ABCD 的顶点A,B 及CD的中点P 处,已知AB="20km,CB" ="10km" ,为了处理三家工厂的污水,现要在矩形ABCD 的区域中(含边界),且与A,B等距离的一点O 处建造一个污水处理厂,并铺设排污管道AO,BO,OP ,设排污管道的总长为km. (Ⅰ)设∠BAO=(rad),将表示成的函数关系式; (Ⅱ)请用(Ⅰ)中的函数关系式,确定污水处理厂的位置,使三条排污管道总长度最短.
已知数列{}满足,是与的等差中项. (1)求数列{}的通项公式; (2)若满足,,求的最大值.