为了了解小学生的体能情况,抽取某校一个年级的部分学生进行一分钟的跳绳次数测试,将取得数据整理后,画出频率分布直方图(如下图),已知图中从左到右前三个小组的频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率约为多少.
设数列的前n项和为,对任意的正整数n,都有成立,记(), (1)求数列的通项公式; (2)记(),设数列的前n和为,求证:对任意正整数n,都有.
重庆市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域是半径为R的圆面.该圆面的内接四边形ABCD是原棚户建筑用地,测量可知边界AB =" AD" = 4万米,BC = 6万米,CD = 2万米, (1)请计算原棚户区建筑用地ABCD的面积及圆面的半径R的值; (2)因地理条件的限制,边界AD、DC不能变更,而边界AB、BC可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧ABC上设计一点P,使得棚户区改造的新建筑用地APCD的面积最大,并求最大值.
已知函数的定义域是(0,),当x > 1时,>0,且, (1)证明:在定义域上是增函数; (2)若,解不等式.
已知向量=(,),=(,),设, (1)求的最小正周期及单调递增区间; (2)若,求的值域; (3)若的图象按=(t,0)作长度最短的平移后,其图象关于原点对称,求的坐标.
设函数,且关于x的不等式的解集为, (1)求b的值; (2)解关于x的不等式().